Secant Method For Solving Nonlinear Equations Method Basics

Gary Schurman, MBE, CFA

December, 2022

In our series on the Newton-Raphson Method for solving non-linear equations we used the derivative of $f(x)$ to solve for the value of the independent variable x given the value of the dependent variable $f(x)$. In our series on the Secant Method we will use two points on the $f(x)$ line rather than the derivative of $f(x)$ to solve for x. To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

We are given the following non-linear equation for $f(x)$...

$$
\begin{equation*}
f(x): 4 x^{2}=27 \tag{1}
\end{equation*}
$$

Question: Use the secant method to solve the equation above for the independent variable x.

Secant Method Equations

We are given the non-linear function $f(x)$ and the value of that function at x and are tasked with solving for the independent variable x. The form of the equation that we must solve is...

$$
\begin{equation*}
f(x)=c \ldots \text { where... the variable } c \text { is a known constant ...and... the independent variable } x \text { is unknown } \tag{2}
\end{equation*}
$$

To employ the secant method to solve for x we need to define the two points a and b such that...

$$
\begin{equation*}
f(a)<0 \ldots \text { and } \ldots f(b)>0 \text {...given that } \ldots a<b \tag{3}
\end{equation*}
$$

To ensure that the two points a and b exist, using Equation (2) above we will define our new function $g(x)$ to be...

$$
\begin{equation*}
g(x)=f(x)-c=0 \ldots \text { such that... } g(a)<0 \ldots \text { and... } g(b)>0 \tag{4}
\end{equation*}
$$

Using Equations (1) and (4) above the equation for $g(x)$ for our problem is...

$$
\begin{equation*}
g(x): \quad 4 x^{2}-27=0 \tag{5}
\end{equation*}
$$

We will define the function $s(x)$ to be the secant line that connects points a and b. Using Equation (4) above the equation for the secant line is...

$$
\begin{equation*}
s(x)=m(x-a)+d \ldots \text { where } \ldots m=\text { slope }=\frac{g(b)-g(a)}{b-a} \ldots \text { and } \ldots d=\text { constant }=g(a) \tag{6}
\end{equation*}
$$

The graph below shows the graph of our problem's function $g(x)$ and secant $s(x)$ at points $a=1$ and $b=4$. Note that at point a the value of the function $g(a)=s(a)=-23.00$ and at point b the value of the function $g(b)=s(b)=37.00$

Note that in the graph above the actual value of the independent variable x is the point at which the function $g(x)$ crosses the x-axis, which looks to be somewhere between 2.50 and 2.80 . Whereas the function $g(x)$ is nonlinear and the value of x where $g(x)=0$ is difficult to calculate, the function $s(x)$ is linear and the value of x where $s(x)=0$ is easy to calculate. Therefore, to calculate the actual value of x we employ the following iteration...

Step	Action
1	Determine guess values for points a and b such that $g(a)<0$ and $g(b)>0$.
2	Calculate the secant equation $s(x)$ that connects points a and b.
3	Use the secant equation from Step 2 to solve for \hat{a} such that $s(\hat{a})=0$.
4	Use the value of \hat{a} from Step 3 and calculate the value of $g(\hat{a})$.
5	If $g(\hat{a}) \approx 0$ then stop, otherwise replace the value of a with \hat{a} and go to Step 2.

Using Equations (5) and (6) the equation that we will use for \hat{a} in Step 3 above is...

$$
\begin{equation*}
\text { if... } s(\hat{a})=m(\hat{a}-a)+d=0 \text {...then... } \hat{a}=a-\frac{d}{m}=a-f(a)\left(\frac{g(b)-g(a)}{b-a}\right)^{-1} \tag{7}
\end{equation*}
$$

The Answer To Our Hypothetical Problem

Question: Use the secant method to solve the equation $f(x): 4 x^{2}=27$ for the independent variable x.

Our first task is to determine the equation for the function $g(x)$ such that...

$$
\begin{equation*}
\text { if... } g(x)=0 \text {...then... } g(x)=4 x^{2}-27=0 \tag{8}
\end{equation*}
$$

The next step is to choose values for the points a and b such that $g(a)<0$ and $g(b)>0$. If we choose the points $a=1$ and $b=4$ then using Equation (8) above...

$$
\begin{equation*}
g(a)=g(1)=-23.00 \ldots \text { and } \ldots g(b)=g(4)=37.00 \ldots \text { and } \ldots \quad f(a)=f(1)=4 \times 1^{2}-27=-23.00 \tag{9}
\end{equation*}
$$

The next step is to plug the function values from Equation (9) above into iterated Equation (7) above and calculate the value of $\hat{a} . .$.

$$
\begin{equation*}
\hat{a}=1.00-(-23.00) \times\left(\frac{37.00-(-23.00)}{4.00-1.00}\right)^{-1}=2.15 \ldots \text { such that... } g(\hat{a})=4 \times 2.15^{2}-27=-8.51 \tag{10}
\end{equation*}
$$

If the function $g(\hat{a})$ in Equation (10) above is approximately zero (or close enough) then we can stop. If $g(\hat{a})$ is materially different from zero then we replace the parameter a with \hat{a} and perform the next iteration. The graph
below presents our two functions after the first iteration where parameter a becomes \hat{a}, parameter b is unchanged, and the secant is recalculated...

Note that in the graph above the second iteration $g(\hat{a})-f(\hat{a})$ is less than the first iteration $g(a)-f(a)$, which means that we a converging to the solution to our non-linear equation.

If we iterate Equation (7) above then the results of each iteration are...

Iteration	a	b	$\mathrm{g}(\mathrm{a})$	$\mathrm{g}(\mathrm{b})$	\hat{a}	$g(\hat{a})$
1	1.0000	4.0000	-23.0000	37.0000	2.1500	-8.5100
2	2.1500	4.0000	-8.5100	37.0000	2.4959	-2.0812
3	2.4959	4.0000	-2.0812	37.0000	2.5760	-0.4562
4	2.5760	4.0000	-0.4562	37.0000	2.5934	-0.0976
5	2.5934	4.0000	-0.0976	37.0000	2.5971	-0.0208
6	2.5971	4.0000	-0.0208	37.0000	2.5979	-0.0044
7	2.5979	4.0000	-0.0044	37.0000	2.5980	-0.0009
8	2.5980	4.0000	-0.0009	37.0000	2.5981	-0.0002
9	2.5981	4.0000	-0.0002	37.0000	2.5981	0.0000

Note that after each iteration we replace a with \hat{a} and recalculate. If we determine that we want the solution to the problem to be accurate up to 4 decimal places then after iteration nine $g(\hat{a}) \approx 0$ such that the answer to our hypothetical problem is $x=2.5981 .\left(f(2.5981)=4 \times 2.5981^{2}=27.00\right)$.

References

[1] Gary Schurman, The Taylor Series Expansion, November, 2017.

